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ABSTRACT

Let Q[¢] denote the polynomial algebra (with 1) in commutative indeter-
minates -ftf}n .1 L4, j<n 1<k < o0, over a commutative ring Q. The
algebra of generic matrices QY] is defined to be the Q-subalgebra of
M, (Q [2]) generated by the matrices ¥, = (f;}'f)),l Lij€n 1Sk <o
This algebra has been studied extensively by Amitsur and by Procesi [8]; in
particular Amitsur [1] has used it to construct a finite dimensional, central
division algebra Q (Y) which is not a crossed product. In this paper we shall
prove, for Q a domain, that Q(Y) has exponent n in the Brauer group (Amit-
sur may already know this fact); consequently, for Q an infinite field and na
multiple of 4, if (X1, ---, X,,) is @ polynomial linear in all the X; but one
(similar to Formanek’s central polynomials for matrix rings) and f2 is central
for M, (), then f is central for M, (). (The existence of a polynomial not
central for M, (Q), but whose square is central for M,Q) is equivalent to
every central division algebra of degree » containing a quadratic extension of its
center; well-known theory immediately shows thisis the case of 4|n and 8}n.)
Also, information is obtained about Q(Y)for arbitary Q, most notably that the
Jacobson radical is the set of nilpotent elements.

1. Preliminaries

All rings and algebras are associative with 1. Let Q be a commutative ring. We
shall deal with the category of Q-algebras, hereafter called algebras. Consider
Q{X} =0Q{X,,X,,--}, the free algebra generated by a countable set of non-
commuting indeterminates over Q. The elements of Q{X } are called polynomials.

An element f of Q{X} contained in the subalgebra generated by X, --

written f(X, -+, X,,). Note that Q{X} is free as a Q-module, with countable base
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consisting of 1 and the distinct monomials X; - X;,, i; = 1,2,---. Writing a
polynomial f as a unique linear combination of elements of this base, we call the
monomials in this expression the monomials of f ; fis linear in X, if X, has degree
1 in each monomial of f.

The standard polynomial S, (X, X5,) = X, (sgT)X ¢y - X (20, ® & permu-
tation of (1,---,2n). A polynomial f is an identity of R if f is in the kernel of every
homomorphism from Q{X} to R; R is a Pl-algebra if (S,,)" is an identity of R
for suitable n, m (the smallest such n is called the degree of R). A consequence of
the existence of central polynomials for matrix algebras over commutative rings
is the following theorem.

THEOREM A. ([9].) Any nonzero ideal of a semiprime Pl-algebra in-
tersects the center nontrivially.

Let R be an algebra with center C. A submonoid of C is a multiplicative set with
1. Given a submonoid S of C, let Rg be the (commutative) localization of R (as
C-module) with respect to S, given the natural algebra structure by defining
(rysT (s Y = (rrp) (sy5;)~ 1 It is easy to see (refer to [6, Lem. 4.2, p. 26])
that for any subring H of C containing S, the algebra homomorphism

Rs— R ® Hg,
H

given by rs~ ! r®s?

, is an isomorphism. An extensive treatment of this
procedure, known as central localization, is given for Pl-algebras in [10], and

one application is a fast proof of the following fact, due to many people.

THeOREM B. ([9]) Let R be a prime Pl-algebra of degree n and let
S = C — {0}. Then Ry is a simple artinian Pl-algebra of degree n, cent Rg = Cs,
the quotient field of C, and Ry is the classical left and right quotient algebra of R.

Now for any s in S, let {s) denote the submonoid {s/ ] j=0,1,2,---} and let
Vvt R—> R, be the canonical homomorphism r + r1='. % ={R¢, ] s€S} has a
partial ordering given by R £ Ry if v,(s) is invertible in R,y; in this case
there is a unique homomorphism ¢, .-z R¢sy— Reyy such that ¢ ovo=vy. (£,{¢;,+})
clearly has the direct limit Rg (refer to [4, pp. 87-88]). This fact will be used in
Section 3.

2. Basic properties of algebras of generic matrices

An ideal W of an algebra R is a T-ideal of R if W is invariant under all en-
domorphisms of R. Q{X} /W is a universal Pl-algebra if W is a T-ideal of Q{X}
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containing (S,,(Xy, -, X,))" for some n,m. Note that for any Pl-algebra R,
the set W of identities of R is a T-ideal of Q{X} containing some (S,,(X,, -, X,;,))™,
so Q{X} /W is a universal PI-algebra.

Now let Q[¢]=0[¢P]be the polynomial algebra in commutative inde-
terminates & over Q, 1 <i,j <n, 1 <k < co. Fixing n, we define the algebra
of generic n x n matrices Q{Y} as the subalgebra of M,(Q[£]) generated by the
generic matrices Y, = (&%), 1 £i,j < n, 1 £ k < 0. Note, for any commutative
algebra K and elements ry, r,,--- of M (K), there is a unique Q-algebra homo-
morphism of Q{Y} to M, (K) sending Y, r;, Y,+>r,--. For, if r
= (¥, r,¥in K, then the Q-algebra homomorphism Q[¢]— K sending
B »rP, 1<i,j<n, 1 k<o, extends uniquely to an Q-algebra homo-
morphism of M,(Q[&]) to M,(K); the restriction to Q{Y} is the required
homomorphism.

Let Q’ be the classical ring of quotients of Q[¢]; if Q is a domain then Q' is an
infinite field. The following theorem is an extension of a well-known result (when

Q is a field).

THEOREM 1. (i). Q{Y} = Q{X} /W where W is the set of identities of M, (Q")
(as Q-algebra). Hence, Q{Y} is a universal Pl-algebra.

@i). Q{Y}Q' = M,Q).

PROOF. (i). Let ¢: Q{X} - Q{Y} be the epimorphism sending the indeterminate
X, into the generic matrix Y. Since Q{Y} = M,(Q’), we have W< ker ¢. On the
other hand, suppose f(Xi,:,X,)eker¢. Then f(Y,, -, Y,) = 0. Given
Ty, I'm in M,(Q') one can find a homomorphism of Q{Y} to M,(Q’) sending
Y, - ry, -, Y= s hence f(ry, -+, 1), = 0 for all ry, -, 1, in M, (Q’), implying
feW. Therefore ker ¢ = W.

(). For 1Si<n, let u=(—1Dn+j and write e, for ¢, ¢, for &5,
Then Y, = X¢ 6., 1 S u,k<n? Let Z be the n* x n® matrix whose (u, k) entry is
€41 1 S u, k < n?. Note that each of the n* entries in Z is a distinct indeterminate.
The theorem is proved if Z is invertible in M, ,(Q"), for in that case we can express
the elementary matrices e, as linear combinations of Y;,---, Y,. In view of the
formula detZ = Z adjZ (where adj means adjoint matrix), it suffices to show
det Z is invertible in ©’. Note this is trivial if Q' is a field, because det Z # 0.

In general, it suffices to prove det Z is not a zero-divisor in Q[¢]. Le
& = {EP|1<i,jsn 1 £k <o} We claim in fact for any m >0 and any
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m x m matrix A with distinct entries in &, that det A is regular in Q[¢]. Indeed,
the assertion is immediate for m = 1, so we proceed by induction on m. Let
&’ = {entries of A}; by assumption &’ has cardinality m?. Write an element @
of Q[¢] as w(¢y, -, &) if &,,-+, & are the only indeterminates (in &) occurring
in w. If det A is a zero-divisor in Q[£], choose w(&y, --+,&,) in Q[¢] with ¢ minimal
such that @ det 4 = 0. Obviously the coefficient of ¢/ in w det A is 0, each j.
Write w = X!, o, -, &_ )&, suitable u, v, with o, # 0. By assumption on ¢,
w,det 4 # 0.

If & ¢’ then, by looking at the coefficient of &7, we obtain w,detAd = 0,
contrary to the assumption. So & e &’. But, looking at the cocfficient of &/**
we obtain w,det A’ = 0, where 4’ is the minor of A taken at the position of &,
This contradicts the induction hypothesis because 4’ is an (m - 1) x (m — 1)
matrix with distinct entries in &. Hence det 4 is not a zero-divisor in Q[¢],

yielding the claim and proving the theorem. Q.E.D.

An immediate consequence of Theorem 1 is that Q{Y} is prime if and only if Q
is a domain.

3. Results when Q is a domain

Assume throughout this section that Q is a domain. As we have already noted,
Q' is then an infinite field and Q{Y} is prime. Let C' = centQ{Y}. By Theorem B,
we can form Q(Y) = Q{Y}¢ _o;, @ simple artinian algebra of degree n, whose
center C is the quotient field of C’. Moreover, since C’' < Q[¢&], clearly we can
view (Y) < M, (Q’), whereby Theorem 1 implies Q(Y)Q' = M, (Q').

We shall often rely on the existence (demonstrated in characteristic 0 by Brauer
[5] and in general by Amistur [2]) of a division Q’-algebra D of degree n and
exponent n in the Brauer group.

Amistur has proved, using this fact, that Q(Y) is a division algebra. A similar
proof using central localization, is as follows. Choose any nonzero f(Y, -+, Y,,) in
Q{Y}. Then f(X,, -+, X,,) is not an identity of D, so f(dy, --,d,,) # O for suitable
dy, -, d, in D. But D has no nonzero nilpotent elements; hence, specializing
Y, +dy, -, Y, d,, we see f(Yy,,Y,) is not nilpotent in Q{Y}. Hence, no
nonzero element of Q{Y} is nilpotent, and it follows that Q(Y) has no nonzero
nilpotent elements. Therefore (Y) is a division algebra by the Wedderburn
structure theorem. Incidentally, it clearly follows for an infinite domain Q that if
f*is an identity of M,(Q) then f is also an identity.



Vol. 18, 1974 UNIVERSAL PI-ALGEBRAS 69

Amitsur [1] has shown in characteristic O that Q(Y) is not a crossed product if
nis divisible by 8 or by the square of an odd prime; Schacher and Small [11] have
used Amitsur’s methods to obtain similar results in characteristic # 0.

THeorReM 2. SXY) has exponent n in the Brauer group.

Proor. For any algebra R with arbitrary center C, define inductively R'=R
and R' = R'~! ®cR. For example, (Q{X})' = Q{X}Qq - @aQ{X}. The crux of
the proof lies in the following lemma.

LemMA.  If Q(Y)! has a set of u® matric units then, for any simple Q'-algebra
A of degree n, A* also has a set of u? matric units.

Given the lemma, the theorem is immediate. Indeed, let us assume (Y) has
exponent ¢ < n in the Brauer group, and let C = centQ(Y). Then (Q(Y))' & M,(C)
50 (Q(Y))" has a set of (n*)? matric units. Hence, by the lemma, A° also has a set of
(n')* matric units, 4 any simple Q'-algebra. It follows 4’ is a matrix algebra, so
each A has exponent less then or equal to ¢ in the Brauer group. This contradicts
the existence of a division Q’-algebra of degree n, having exponent Q in the
Brauer group; hence Q(Y) must have degree n.

So it suffices to prove the lemma. Since C is the quotient field of C, we have
Q) =Y} ®cC, so AY)»Q{Y)®cC. Viewing C'<cent Q{Y} via
crl® @l cin C,let R=Q{Y} and S = C’ — {0}; then Ry = Q{Y}'®..C
~ YY),

Suppose {e;; |1 <i,j S u} is a set of matric units for Q(Y)’; that is, ee,, = 0
for j # v, €€ = €, and X/lie; =1 Viewed in Rg, ¢;; = fy;s~, 1 <i,j<u
fijin R, sin S. Let vs: R > Ry be the canonical homomorphism r +r1~1, and let
B = ker vs. Then f;;f,,, € B for j # v, f;fjw — fius€ B, and X, f; — seB. Since
these are a finite number of conditions and since Ry is the direct Iimit of the R, ¢
in S, there exists ¢ in S such that, for B’= kerv.: R— R, f;f,,, € B’ (for j #v),
fiifiw—fws€B’sand XL, f;; —se B’ But cs # 0 in €, so for any simple algebra
A of degree n, there exists a specialization y: Q{Y} — 4 such that ¥(cs) # 0; ¥
induces a homomorphism

n[?:R=Q{Y} ®, -, ® Q{Y} M"' AR ® A»A ® - ® A = A"
c c c c

cent A cent A
Clearly §i(cs) # 0, so Yi(cs)~ ! ecent A, implying ¥(c)~* € cent 4; hence ¥ induces
a homomorphism /: R, = A (given by Ji(rc™") = J(r)}(c)~*.)
For any rin R, let 7 denote (§ ov,) (r). Then f;;f,,, = Oforj # v, Jiifis=Fiw =0
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T¥_, fu =35, and 5! exists. Hence {f;;s="|1 < i,j Su} is a set of matric units
for Q(Y)', proving the lemma (and thus the theorem). Q.E.D.

ExAMPLE 1. Letn = 2,Q = Z, and t = 2. Then Z{Y}? is not torsion-free as
a module over its center, and is not prime. Indeed, the canonical injection
¢: Z{Y} - Z(Y) induces a homomorphism

é: 2{¥)? = Z{V}® 2{V} 2254 I(Y) ® 1Y)~ L(Y)?,
c c
and both assertions will follow from Proposition 1.

PROPOSITION 1. ker # 0.

Proor. We shall show in fact that
r= [le, Y,] C® [Y, Y] -[Y,, Yz]? [le, Y3]

s a noazero element of ker @, where [x,y] = xy — yx.
First observe in the simple algebra Z(Y) that Y,;>— Y, tr Y, + detY; = 0. Hence,
[Y2Y,]—[Y, V,ltr Y, +0 = 0, so [Y2 Y,] = [Y,, Y,]tr Y;. Therefore,

[Y2Y,] @ [V, Y] = [V, ]uY, ®[Y,, Y] =[Y,, V2] % (Y, Ys]tr Y,
é é
= [Yl’ Y2] (% [Yl’ Y3]

(where € = cent Z(Y)), implying r e ker §.

The proof r # 0 is a matter of comparing degrees. Suppose r = 0. Then the
formal construction of tensor product shows that in Z{Y} x Z{ Y}, the algebra
formally generated by ordered pairs (f,g), f,g in Z{Y}, the element

(Y2 Y], [¥,, Y. = (Y, Yol (Y3 V5]
is of the form

‘2((f1i+f2iagi) ~(fir9) — (f29)) + jz((fj,gu‘*‘gzj)"'(fjagu)—(fj,gzj»

+ % ((fir €x90) — (s 95))

where ¢, € C’ = cent Z{Y} and all the f and g are in Z{Y}.

For any fin Z{Y}, let f* denote the sum of those monomials of f of total degree
t and let (Z(f;,g))™" be defined as X(fg®). We claim (Z((fi, cgs)
— (efir g)'*® = 0. Indeed, consider the polynomial ¢(Y;, -, Y,,) in C’. Clearly
clXy, -+, X,) is a central polynomial of My(Z), 50 [X,+1, (X, -+ X,n)] is an
identity of M,(Z). Since Z has characteristic 0, the standard Vandermonde
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argument shows that [ X,,+1,¢(X,, -+, X,,)] is the sum of identities of the form
[Xm+1s (X4, -+, X)), homogeneous in each indeterminate. Hence each ¢, is an
identity or a central polynomial of M,(Z), homogeneous in each indeterminate;
clearly ¢, (Y;,+, Yp) € C’, and ¢(Y;, -, Y,) = 2¢(Yy, -+, Y,). But any nonzero
¢, has total degree greater than or equal to 4 because [ X, + 1, (X, -+, X,»)] is an
identity of M,(Z), not a multiple of the standard identity S, (refer to Amitsur-

Levitzki [3]). Thus (f, ¢,g,)**> = 0 and (c,f;, 9)>'® = 0 for all k, as claimed.
Thus

(Y., 1,], [szs Y;]) = (([Y12’ Y,), [Yy, Y3]) — ([Y,, Yo, [le, Ys]))(z's)
= ( Z((f1i+f2i’gz)—(f1i’gi)_(fZi’gi)) + z_((fj’glj+ 92— (f191)—1,920)

+ S Uneg) = oo™
S UR D (P ) -0
i

o (
+ LU0 + )6 - U7 ) + 0,0
implying [Y;, Y,]® [Y{ ¥,] = 0in Z{Y}?, easily seen to be false by specializing
Y, toey,, Y, and Y; to e,,. This contradiction shows r # 0. Q.E.D.
The same proof shows
Y} @ 2(Y) 22 2(Y) ® Z(Y)
c’ C’

is not injective, so Z{Y} is not C’-flat. Theorem 2 can be used to obtain a negative
result for polynomials, not central for M,(Q’), whose squares are central for

M, Q).

THEOREM 3. If 4 divides n and f(Xy,-,X,) is a polynomial linear in
X, -, X, such that f? is central for M (Q"), then f is central for M (Q").

The proof is long and technical, involving graph theoretic arguments; only the
basic idea is given here. Let Y;,-+-, Y, Y,,---, Y, be distinct generic matrices in
Q{Y}. Assume f? is central for M,(Q"). If f(Yy, Yy, -, Y,,) and f(¥y, Yo, -+, Y)
commute, then (it can be shown) f is central for M, (Q"). Hence we may assume
f(Y,, Yy, Y,) and f(Yy,Y;,-,Y,) do not commute. Let fi=f(Y,,-, ¥,
Y/ 1o Yy). It follows that f; and f;_; do not commute for some i 2. But
fifi—1—fi-1f; anticommutes with f; and both these elements have squares in C’;
hence they generate a quaternion subalgebra of Q(Y). Since Q(Y) is a tensor
product of any subalgebra and its centralizer, Q(Y) has exponent less than n,
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contradicting Theorem 2. Hence f is indeed central for M, (Q’), yielding the
theorem.

On the other hand, classical division algebra theory shows that Q(Y) has
square-central elements if n is of the form 4(2k + 1), any nonnegative integer k,
implying that square-central polynomials do exist for M,(Q), for all such n. Hence
linearity in X,,---,X,, is a crucial condition for Theorem 3 to hold if 8 /n. An

important open question is whether square-central polynomials exist for M,(Q")
if 8[ n.

4. Universal Pl-algebras over arbitrary

Let Q be an arbitrary commutative ring, and let ¥ = {T-ideals of Q{X}
containing a power of the standard polynomial}, that is, We# if and only if
Q{X} /W is a universal Pl-algebra. Suppose We #" and let R = Q{X}/W.

ProrosITION 1. If A = A|W is a T-ideal of R then R|A and R/Ann A are
universal Pl-algebras (where Ann A denotes the right annihilator of A in R). In
particular, if R has nilradical N and Jacobson radical J then RN, R/Ann N,
R/J, and R [Ann J are universal Pl-algebras.

Proor. The second assertion follows from the first assertion since the nil-
radical and Jacobson radical are clearly T-ideals. So assume 4 = A/W is a
T-ideal of R. Clearly A is a T-ideal of Q{X}; moreover if (S,,)" € W then (S,,)" € 4,
implying A€ #". Hence R/A ~ Q{X}/A is a universal Pl-algebra.

Similarly, to prove R/Ann A is a universal PI-algebra, it suffices to show that
B = {feQ{X}|Af < W} is a T-ideal of Q{X}; in other words, for any endo-
morphism ¥ of Q{X} and f(Xy, -+, X,,) in B, one must show Y(f(X,, -, X,,)) € B.
Let y(f(X,, -, X)) = fi(X,,++, X,). We may assume k = m (by considering, if
necessary, indeterminates occurring trivially in f); we are done if

9 Xy X fi(X gy, X)eW
for each g(X,,---,X,) in A, Well, g(X, ,, ", Xy+,) €A since A is a T-ideal, so
9 Xps 1o Xes)f(Xy, oo+, X)) € W. Define an endomorphism y’: Q{X} - Q{X}
by ¥'(X)) =¥(X)) for i<k, Y'(X,)=X;_, for i>k. Then g(X,,-,X)
SiX g X)) = (Xt 150 Xar ) f(X 1, -+, X)) € W, as desired. Q.E.D.

Let Rad denote the Jacobson radical. Amitsur has proved the next theorem
when Q is an infinite field (refer to [7, Chap. X]).

THEOREM 4. If U is a universal Pl-algebra then Rad U is nil.
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Proor. By factoring out the nilradical, it suffices to assume U is semiprime
and to prove Rad U = 0. Let J = Rad U.

Case I. Every identity of U is the sum of completely homogeneous identities.
In this case, it is well known (refer to [10, Prop. 1.3]) that U and U[A] satisfy the
same identities, A a commutative indeterminate. Since U[4] is semiprimitive (a
consequence of a theorem of Amitsur in [7, p. 10] since semiprime PI-algebras
have no nonzero nil ideals) and since U is universal, we obtain a sequence of
surjections U — U [J — U[4]. But then U/J is a universal PI-algebra satisfying
the same identities as U, so J = 0, proving the theorem in Case I. (Note this case
subsumes Amitsur’s result; in fact such a proof has been known by Amitsur.)

Case II. In general, let U= U/AnnJ and J = (J +AnnJ)/AnnJ. U is a
universal PI-algebra by Theorem 1. Also, U is semiprime. (Indeed, suppose there
is an ideal A of U with 42 < AnnJ. Then (JA)? € J4% =0, implying JA = 0;
hence A = AnnJ, so 4 = 0.) Likewise, Ann J = 0. On the other hand, setting
H = cent U, we see J N H is a quasi-regular ideal of H, so that Ann(J N H) = 0.
(Proof: let B = Ann(J NH). Then (HNJB)Y> c(HNJ)B=0,s0 HNJB = 0;
thus JB = 0 by Theorem A, so B < Ann J = 0.) This observation, in conjunction
with Case I, reduces the theorem to the following lemma.

LEMMA. Let R be a semiprime Pl-algebra with center C, such that Ann Rad C
=0. Then all identities of R are sums of completely homogeneous identities.

Proor. Suppose an identity f(Xy, -+-, X,,) of R is not homogeneous in X, and
let f(X,, -+, X,,) be the sums of those monomials of f with degree i in X,. Clearly
fXy, X, = 2. (X, , X,); we shall prove each f; is an identity of R, and
the lemma will follow by iteration of this procedure on each indeterminate.
Choose arbitrarily r,, -, r,, in R and let y; = f(r,, -+, 1), 0 < i < d, where d is
the degree of f in the first indeterminate. For any ¢ in Rad C, 0<j<d,

4oy = f(c'ry, vy, -y 1) = 0. Using the Vandermonde determinant argument
on this system of d + 1 equations (with y;as the variables, 0 < i < d), we obtain
g(c)y; = 0 for all i, where g(c) is a product of terms of the form ¢?—¢?, p<gq.
Let g(c) = ¢'g,(c), g, a polynomial in ¢ having constant term 1. Since ceRad C,
g,(c) is invertible, so ¢'y; = O for all i. Thus (cy;R)* = 0, implying cy; = 0, all i
and all cin Rad C. Hence y,€ Ann Rad C = 0, all i, implying each f; is an identity
of R, as claimed. Q.E.D.

Theorem 4 can be applied to algebras of generic matrices Q{Y} since these are
universal Pl-algebras (by Theorem 1).
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THEOREM 5. Rad (Q{Y}) is the set of nilpotent elements of Q{Y}.

ProoF. In view of Theorem 4, we need only show each nilpotent element of
Q{Y} is in Rad(Q{Y}). Suppose f(Yy,-,Y,)" = 0. Then f(X,, -, X,)" is an
identity of M,(Q’), hence of M (Q'/P) for any prime ideal P of Q’. But Q' /P is
an infinite domain, so f(X,, -+, X,,) is an identity of M (Q'/P) (by the remarks
preceding Theorem 2). If N is the nilradical of Q' then M,(N’) is the nilradical of
M, (Q") and we conclude f(Y,,-, V) e M,(N)NQ{Y} < Rad(Q{Y}). Q.E.D.

COROLLARY. Q{Y} has no nonzero nilpotent elements if and only if Q is
semiprime.
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