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ABSTRACT 

Let ~l[~] denote the polynomial algebra (with 1) in commutative indeter- 
minates ~!k), 1 < i, j < n, 1 < k < 00, over a commutative ring fL The 

algebra of generic matrices l')[Y] is defined to be the l)-subalgebra of 
Mn(~ [~]) generated by thematriees Yk = .-.t~tk~.., 1 =< i,j =< n, 1 =< k < o0. 

tJ 
This algebra has been studied extensively by Amitsur and by Procesi [8]; in 
particular Amitsur [1] has used it to construct a finite dimensional, central 
division algebra fl (Y) which is not a crossed product. In this paper we shall 

prove, for f~ a domain, that I)(Y) has exponent n in the Brauer group (Amit- 
sur may already know this fact); consequently, for ~ an infinite field and n a 
multiple of 4, i f f(Xh ...,X,,) is a polynomial linear in all the X i but one 
(similar to Formanek's central polynomials for matrix rings) and f2 is central 
for Mn (f2), then f is central for Mn (fl). (The existence of a polynomial not 
central for Mn (~), but whose square is central for Mnfl) is equivalent to 
every central division algebra of degree n containing a quadratic extension of its 
center; well-known theory immediately shows this is the case of 41 n and 8fn.) 
Also, information is obtained about lq(Y)for arbitary f~, most notably that the 
Jacobson radical is the set of nilpotent elements. 

1. Preliminaries 

All rings and algebras are associative with 1. Let f~ be a commutat ive  ring. We 

shall deal with the category o f  f~-algebras, hereafter called algebras. Consider 

I){X} = I){X1,X2,  ...}, the free algebra generated by a countable  set o f  non-  

commut ing  indeterminates over fL The elements o f  f~{X } are called polynomials .  

An element f o f  f~{X} contained in the subalgebra generated by X1, "",Xm is 

written f (X~ , . . . ,  Xm). Note  that  ~{X} is free as a f~-module, with countable base 
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consisting of  1 and the distinct monomials X,, ... X~,, ij = 1, 2, .... Writing a 

polynomial f as a unique linear combination of elements of this base, we call the 

monomials in this expression the monomials o f f ; f  is linear in X i if X~ has degree 

1 in each monomial of f .  

The standard polynomial $2,(X1, ..., X2n ) ~- ~Tt (sg n)X~l ..- X~t2, ), n a permu- 

tation of (1, -.., 2n). A polynomial f is an identity of R i f f  is in the kernel of every 

bomomorphism from fl(X} to R; R is a PI-algebra if ($2,) m is an identity of  R 

for suitable n, m (the smallest such n is called the degree of R). A consequence of 

the existence of central polynomials for matrix algebras over commutative rings 

is the following theorem. 

THEOREM A. ([9].) Any nonzero ideal of a semiprime PI-algebra in- 

tersects the center nontrivially. 

Let R be an algebra with center C. A submonoid of C is a multiplicative set with 

1. Given a submonoid S of  C, let Rs be the (commutative) localization of  R (as 

C-module) with respect to S, given the natural algebra structure by defining 

(rls'~l)(r2s2 l) = (rlr2)(sls2) -1. It is easy to see (refer to [6, Lem. 4.2, p. 26]) 

that for any subring H of C containing S, the algebra homomorphism 

R s ~ R | Hs, 
H 

given by rs -~ ~ r |  -~, is an isomorphism. An extensive treatment of this 

procedure, known as central localization, is given for PI-algebras in [10], and 

one application is a fast proof  of the following fact, due to many people. 

THEOREM B. ([9].) Let R be a prime PI-algebra of degree n and let 

S = C - (0}. Then Rs is a simple artinian PI-algebra of degree n, cent R s = Cs, 

the quotient field of C, and Rs is the classical left and right quotient algebra of R. 

Now for any s in S, let ( s )  denote the submonoid (s j ]j -- 0, 1,2, .-.} and let 

v,: R ~ R<s> be the canonical homomorphism r ~ rl - x. 6r = {Ro> ] s e S} has a 

partial ordering given by Ro> < R<~,> if v,,(s) is invertible in R<,,>; in this case 

there is a unique homomorphism q~,,s,: R<s>~ Ro, > such that ~b,,~,vs = v~,. (5",{~b,,,,}) 

clearly has the direct limit Rs (refer to [4, pp. 87-88]). This fact will be used in 

Section 3. 

2. Basic properties of algebras of generic matrices 

An ideal W of an algebra R is a T-ideal of R if W is invariant under all en- 

domorphisms of R. f~(X}/W is a universal PI-algebra if W is a T-ideal of fl{X} 
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containing ($2.(X1, "",X2.))" for some n, m. Note that for any PI-algebra R, 

the set W of identities of R is a T-ideal of f~{X} containing some ($2.(X1, "", X2.)) m, 

so f l{X) /W is a universal PI-algebra. 

Now let f ~ [ ~ ] -  f~[~ff)]be the polynomial algebra in commutative inde- 

terminates ~k) over ~, 1 = i,j __< n, 1 _--< k < o0. Fixing n, we define the algebra 

of generic n x n matrices f~{Y} as the subalgebra of M.(f~[~]) generated by the 

generic matrices Yk = (~)) ,  1 <= i,j  =< n, 1 < k < o0. Note, for any commutative 

algebra K and elements rx, r2, "" of M.(K), there is a unique f~-algebra homo- 

morphism of f~{Y} to Mn(K) sending Y l ~ r l ,  Y z . r 2 , . , . .  For, if r k 

t ~(k)~ r~) k) in K, then the f~-algebra homomorphism fl[~] K sending 

~(k) __, ~(k) 1 < i,j < n, 1 < k < ~ ,  extends uniquely to an ~-algebra homo- i j  t i j  ' ~ . ~  --~ 

morphism of M,(~[~])  to M,(K);  the restriction to ~{Y} is the required 

homomorphism. 

Let fl '  be the classical ring of  quotients of ~[~] ;  if ~ is a domain then ~ '  is an 

infinite field. The following theorem is an extension of a well-known result (when 

f~ is a field). 

THEOREM 1. (i). fl{Y} g f~{X}/W where W is the set of identities of m , (~ ' )  

(as ~-algebra). Hence, ~{Y} is a universal PI-algebra. 

(ii). ~{Y}~'I' = M,(~ ' ) .  

PROOF. (i). Let ~b: fl{X} --* ~{Y) be the epimorphism sending the indeterminate 

Xk into the generic matrix Yk. Since fl{ Y} _c M,(D'), we have W e  ker ~b. On the 

other hand, suppose f (X1 ,  "", X,,) ~ ker ~b. Then f ( Y t ,  "", Ym) = 0. Given 

rl,  "", r,, in M,(D')  one can find a homomorphism of ~{Y} to M,(fl ' )  sending 

Yx -'* rl, "", Y,, ~ r,,; hence f ( r l ,  " ' ,  r),, = 0 for all rl, "", rm in M,(fl ') ,  implying 

f E  W. Therefore ker ~ = W. 

x(k) (ii). For l = < i < n ,  let u = ( i - - 1 ) n + j  and write e. for eij, ~.k for ..ij .  

Then Y~= ]~.~e., 1 < u , k < n  2. Let Z be the n 2 x n 2 matrix whose (u,k) entry is 

~ u , k ,  1 < u, k < n 2. Note that each of  the n # entries in Z is a distinct indeterminate. 

The theorem is proved if Z is invertible in M,,(fl ') ,  for in that ease we can express 

the elementary matrices e, as linear combinations of Y~, ..., Yk. In view of the 

formula de tZ = Z adjZ (where adj means adjoint matrix), it suffices to show 

det Z is invertible in ~ ' .  Note this is trivial if ~ '  is a field, because det Z ~ 0. 

In general, it suffices to prove det Z is not a zero-divisor in ~[~].  Le 

5e = {~ff)ll < i , j < n ,  1 < k <  oo}. We claim in fact for any m > 0  and any 
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m x m matrix A with distinct entries in ~ ,  that det A is regular in f~[4]. Indeed, 

the assertion is immediate for m = 1, so we proceed by induction on m. Let 

6 e '  = (entries of A}; by assumption 6 e' has cardinality m 2. Write an element co 

of fl[~] as ~o(~l, ..., 4,) if 41, "", it are the only indeterminates (in Se) occurring 

in 09. If  det A is a zero-divisor in f~[~], choose o9(~1, ..., 4,) in f~[~] with t minimal 

such that 09 det A = 0. Obviously the coefficient of ~i in co det A is 0, each j .  

Write co = Y'~=u ~(r "", ~t-1)~t ~, suitable u, v, with to~ ~ 0. By assumption on t, 

co~ det A ~ 0. 

If  ~t~S: '  then, by looking at the coefficient of ~7, we obtain o~detA = 0, 

contrary to the assumption. So ~t ~ 6a'. But, looking at the coefficient of ~+x 

we obtain og~detA' = 0, where A' is the minor of  A taken at the position of  ~. 

This contradicts the induction hypothesis because A' is an (m - 1) x (m - 1) 

matrix with distinct entries in 6:. Hence det A is not a zero-divisor in f~[~], 

yielding the claim and proving the theorem. Q.E.D. 

An immediate consequence of  Theorem 1 is that f~(Y} is prime if and only if f~ 

is a domain. 

3. Results when f l  is a domain 

Assume throughout this section that f~ is a domain. As we have already noted, 

f l '  is then an infinite field and f~{Y} is prime. Let C' = cent f~{Y}. By Theorem B, 

we can form fl(Y) = f~{Y}c'-tol, a simple artinian algebra of degree n, whose 

center ~ is the quotient field of  C'. Moreover, since C' ~ f~[~], clearly we can 

view f~(Y) _ Mn(fl'), whereby Theorem 1 implies f~(Y)f~' = Mn(fl'). 

We shall often rely on the existence (demonstrated in characteristic 0 by Brauer 

[5] and in general by Amistur [2]) of a division f~'-algebra D of degree n and 

exponent n in the Brauer group. 

Amistur has proved, using this fact, that f~(Y) is a division algebra. A similar 

proof using central localization, is as follows. Choose any nonzero f(Yl,"', Ym) in 

f~{ Y}. Then f(Xl,.", Xm) is not an identity of D, so f(dl,'", dm) ~ 0 for suitable 

dl, "",din in D. But D has no nonzero nilpotent elements; hence, specializing 

YI ~dl,'",Ym~dm, we see f(Yl,'",Ym) is not nilpotent in f~{Y}. Hence, no 

nonzero element of f~{Y} is nilpotent, and it follows that f~(Y) has no nonzero 

nilpotent elements. Therefore fl(Y) is a division algebra by the Wedderburn 

structure theorem. Incidentally, it clearly follows for an infinite domain f~ that if 

f t  is an identity of M~(fl) then f is also an identity. 
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Amitsur [1] has shown in characteristic 0 that Q(Y) is not a crossed product if 

n is divisible by 8 or by the square of an odd prime; Schacher and Small [11] have 

used Amitsur's methods to obtain similar results in characteristic ~ 0. 

THEOREM 2. f~(Y) has exponent n in the Briner group. 

PROOF. For any algebra R with arbitrary center C, define inductively R t = R 

and R'  = R t-1 |  For example, (f~{X}) ~ = ~q{X}| | The crux of 

the proof lies in the following lemma. 

LEMMA. I f  f~(Y) t has a set of u 2 matric units then,for any simple f~'-algebra 

A of degree n, A t also has a set of u 2 matric units. 

Given the lemma, the theorem is immediate. Indeed, let us assume f~(Y) has 

exponent t < n in the Briner group, and let C = cent f~(Y). Then (f~(y))t ~ Mn,(~) 

so (~(y))t has a set of (nt) 2 matric units. Hence, by the lemma, A t also has a set of 

(nt) 2 matric units, A any simple f~'-algebra. It follows A t is a matrix algebra, so 

each A has exponent less then or equal to t in the Briner group. This contradicts 

the existence of a division f~'-algebra of degree n, having exponent f~ in the 

Brauer group; hence f~(Y) must have degree n. 

So it suffices to prove the lemma. Since ~ is the quotient field of C, we have 

f~(Y) ~ f~{Y} |  so f~(y)t ,~ f~{y}, | Viewing C' ~ cent f~{y}t via 

c ~ 1 | ... | Ic, c in C', let R = f l { Y } '  and S = C'  - {0}; then R s ~ D{Y}' |  

~ f ~ ( y ) ,  

Suppose {e,j I 1 =< i , j  < u} is a set of matric units for f~(y)t; that is, e~ieo, = 0 

for j ~ v, e~ie~w = eiw, and E~= 1 ei~ = 1. Viewed in Rs, e~j = fi~s- 1, 1 <_ i, j  < u 

f~i in R, s in S. Let Vs: R ~ Rs be the canonical homomorphism r ~ r1-1, and let 

B = ker Vs. Then f J ~  E B for j r v, f~ifJ~ - fi~s ~ B, and Z l-- 1 fii - s ~ B. Since 

these are a finite number of conditions and since R s is the direct limit of  the R<c>, c 
g ' �9 in S, there exists c in S such that, for B ' =  kervc: R ~ < ~ > , f J ~ B  ( fo r j  #v), 

f J j w  - f i ~ s  ~ B', and Z,~ 1 fit - s ~ B'. But cs r 0 in C', so for any simple algebra 

A of degree n, there exists a specialization r  D{Y} ~ A  such that r r 0; r 

induces a homomorphism 

| ..,| A | 1 7 4  A- A | ... | a = a t .  
C'  C' C' C" cent A cent A 

Clearly ~(cs) # O, so ~(es)- ~ ~ cent A, implying ~(c)-I  ~ cent A; hence ~ induces 

a homomorphism ~: R<~>-~ A t (given by ~(rc -~) = ~(r)~(c)-~.) 

For any r in R, let f denote (~ ova) (r). T h e n f J ~  = 0 for j  # v, f J ~ - f ~  =0 
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Z~= 1 fu = s, and g-1 exists. Hence {fos-1 1 1 -< i , j  < u} is a set of matric units 

for f~(y)t, proving the lemma (and thus the theorem). Q.E.D. 

EXAMPLE 1. Let n --- 2, ~ = •, and t = 2. Then Z{Y} 2 is not torsion-free as 

a module over its center, and is not prime. Indeed, the canonical injection 

4): 7/{y} ~ Z(y) induces a homomorphism 

$: Z{y} 2 = 77{Y}| 2~{Y} *| Z(Y) | Z(Y)-~ Z(Y) 2, 
C" C" 

and both assertions will follow from Proposition 1. 

PROPOSITION 1. ker ~ # 0. 

PROOF. We shall show in fact that 

r = [Y?, r2] | [Y1, Y33 - [ r l ,  Y23| [r•, Y33 
C' C" 

s a n3azsro element of ker q~, where [x ,y]  ==- xy  - yx .  

First observe in the simple algebra 7/(y) that Y12- YI tr Y1 + det Y1 = 0. Hence, 
y 2  - -  ~-- [ ,, Y2] [Y1, Y2] tr Y1 + 0 = 0, so [Y~, Y2] [YI, Y2] tr Y1. Therefore, 

[Y?,Y2] ~ [Y,,  Y3] = [YI, Yz]tr Yx | [Y, ,  Y3] = [Y1, Y2] | [Yx, Y3]tr Yx 

= [r l ,  r2] ~ [ r l ,  Y3] 
C 

(where ~ = cent 71(Y)), implying r z ker q~. 

The proof r # 0 is a matter of comparing degrees. Suppose r = 0. Then the 

formal construction of tensor product shows that in 2~{Y} x 2~{ Y}, the algebra 

formally generated by ordered pairs ( f ,g) ,  f , g  in Z{Y}, the element 

([Y12, Yz], [Y1, I"3]) - ([I"1, Y2], [Y1, 2 Y3]) 

is of the form 

Z ((fx, +f2,,g,)  - (f~,,g,) - (f2,,g,)) + 
1 

+ 

((fj, g l j+  g2j) - (fi,  glj) - (fl, g21)) 
J 

~-, ((fk, Ckgk) -- (Ckfk, Ok)) 
k 

where CkEC ' = cent Z{Y} and all t h e f  and g are in 7/{y}. 

For any f i n  7/{ y}, let f t~ denote the sum of those monomials o f f  of total degree 

t and let (~,(fi, g3) (~'0 be defined as ~(f(i~),g~~ We claim (2k((fk, Ckgk) 

-- (Czfk,gk))) (2,a) = 0. Indeed, consider the polynomial Ck(Y1, '" ,  Y,,) in C'. Clearly 

ck(X1, "",Xm) is a central polynomial of M2(Z), so [Xm+x, Ck(Xa, "'" Xm)] is an 

identity of M2(Z). Since 71 has characteristic 0, the standard Vandermonde 
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argument shows that [Xm+I,Ck(X1, .",X,,)] is the sum of identities of the form 

IX,,+ 1, CRu(X1, "'', Xm)], homogeneous in each indeterminate. Hence each Cku is an 

identity or a central polynomial of M2(77), homogeneous in each indeterminate; 

clearly eke(Y1,'", Ym) e C', and CR(Y1,'", Ym) = Y~CR~(Y1,'", Ym)" But any nonzero 

Ck~ has total degree greater than or equal to 4 because IX,,+ 1, CRy(X,'", Xm)] is an 

identity of M2(7/), not a multiple of the standard identity $4 (refer to Amitsur- 

Levitzki [3]). Thus (fk, Ckgk) t2'a)-- 0 and (Ckfk, gk) (2'a) ---- 0 for all k, as claimed. 
Thus 

( [g l ,  Y2], [y2, g3]) = (([YI 2, g2], [g, ,  Y3]) - ( [g, ,  g2], [el2, g3]))(z,3) 

= ( ~ ((fxid-f2i, g , ) - ( f l , ,g~) - ( f2 , ,g , ) )  + ~, ((fj, glj-4- g2j)--(fy, glj)--(fy, g2y)) 
i J 

+ Y~ ((fk, Ckgk) -- (Ckfk, gk))) (2'3) 
k 

= ~ C / r (2 )  ._1_ tr(2) ~C3)~, / r  (2) t , (a) 'x  /',C(2) ~wx~ T:21 ,~i : -~ J l t  ,~i :-w2~,gi(3))) 
l 

+ Z ((fj2~, _~3~ ..~3), ~(~)  ~(3), :~(2~ (~ . .  v~y §  , ~ j j - ~ : j  ,g2j))+(O,O), 
i 

implying [I:1, Y2] | [y2  Y3] = 0 in 7/{Y} 2, easily seen to be false by specializing 

Y: to e11, I:2 and Y3 to e12. This contradiction shows r ~ 0. Q.E.D. 

The same proof shows 

77{e}| *| 77(y) | 7/(g) 
C' C' 

is not injective, so Z{Y} is not C'-flat. Theorem 2 can be used to obtain a negative 
result for polynomials, not central for M,(fF), whose squares are central for 
M,(f~'). 

THEOREM 3. I f  4 divides n and f ( X  1, . . , ,X. )  is a polynomial linear in 

X 2 , . . . , X  . such that f 2 is central for M,(f~'), then f is central for M,(f~'). 

The proof is long and technical, involving graph theoretic arguments; only the 

basic idea is given here. Let Yl, "", Y,,, Y~, "", Y" be distinct generic matrices in 

f~{Y}. Assume f2 is central for M.(a'). I f f ( Y  1, I:2, "", Y,,) and f(Y1, Yz', "", Y~,) 

commute, then (it can be shown)f  is central for M,(f~'). Hence we may assume 

f(Y~, Y~, "", Ym) and f(Y~, Y~, ..., Y~) do not commute. Let f~=f(Y1,  "", Y~, 

Y~+t,'", Y~'). It follows that f~ and f~_~ do not commute for some i_> 2. But 

f~fi_ ~-f~_ ~f~ anticommutes with f~ and both these elements have squares in C'; 

hence they generate a quaternion subalgebra of f~(Y). Since f2(Y) is a tensor 

product of any subalgebra and its centralizer, O(Y) has exponent less than n, 
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contradicting Theorem 2. Hence f is indeed central for M~(~'), yielding the 

theorem. 

On the other hand, classical division algebra theory shows that f~(Y) has 

square-central elements if n is of the form 4(2k + 1), any nonnegative integer k, 

implying that square-central polynomials do exist for M~(f~), for all such n. Hence 

linearity in Xz, "",Xm is a crucial condition for Theorem 3 to hold if 8Xn. An 

important open question is whether square-central polynomials exist for M~(f2') 

if 8In. 

4. Universal PI-algebras over arbitrary f~ 

Let f~ be an arbitrary commutative ring, and let Y//" = {T-ideals of f~{X} 

containing a power of the standard polynomial}, that is, W~ Y//" if and only if 

f~{X}/W is a universal PI-algebra. Suppose We #" and let E = ~{X}/W. 

PROPOSITION 1. l f  `4 = A /W is a T-ideal of E then E /`4 and E/Ann `4 are 

universal PI-algebras (where Ann .4 denotes the right annihilator of`4 in E). In 

particular, if E has nilradical N and Jacobson radical J then E/N, E/Ann N, 

E/J, and E/Ann J are universal PI-alflebras. 

PROOF. The second assertion follows from the first assertion since the nil- 

radical and Jacobson radical are clearly T-ideals. So assume `4 = A / W  is a 

T-ideal of E. Clearly A is a T-ideal of f~{X}; moreover if (S2n) m e W then (S2n) m ~ A, 

implying A e Yr Hence E/`4 ~ fl{X}/A is a universal PI-algebra. 

Similarly, to prove/~/Ann `4 is a universal PI-algebra, it suffices to show that 

B = { fe  f~{X}[Af  ~_ W} is a T-ideal of ~{X}; in other words, for any endo- 

morphism ~ of f~{X} and f ( X l , ' " ,  Xm) in B, one must show ~(f(X1,. . . ,  Xm))e B. 

Let ~b(f(Xl,..., Xm)) = f l (X1, '" ,  Xk). We may assume k >- m (by considering, if 

necessary, indeterminates occurring trivially in f ) ,  we are done if 

g(X1,..., X,)fl(X1,.. . ,  Xk) e W 

for each #(Xx,...,Xt) in A. Well, g(X,+l , '" ,Xk+t)eA since A is a T-ideal, so 

g(Xk+ 1,"', Xk+,)f(X1,"',  Xm) e W. Define an endomorphism ~':  f~{X} ~ f~{X} 

by ff'(X~)= ~(X,) for i <  k, ~k'(X,)= X,_ k for i >  k. Then g(X1,...,Xt) 

fl(X1, "'', Xk)  = ~]'(ff(Xk'l" 1,'" ", Xk+t)f(X1,"', Xm)) e IV, as desired. Q.E.D. 

Let Rad denote the Jacobson radical. Amitsur has proved the next theorem 

when ~ is an infinite field (refer to [7, Chap. X]). 

THEOREM 4. I f  U is a universal PI-algebra then Rad U is nil. 
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PROOF. By factoring out the nilradical, it suffices to assume U is semiprime 

and to prove Rad U = 0. Let J = Rad U. 

Case I. Every identity of  U is the sum of completely homogeneous identities. 

In this case, it is well known (refer to [10, Prop. 1.3]) that U and U[2] satisfy the 

same identities, 2 a commutative indeterminate. Since U[2] is semiprimitive (a 

consequence of a theorem of Amitsur in [7, p. 10] since semiprime PI-algebras 

have no nonzero nil ideals) and since U is universal, we obtain a sequence of  

surjections U ~ U /J  ~ U[2]. But then U/J  is a universal PI-algebra satisfying 

the same identities as U, so J = 0, proving the theorem in Case I. (Note this case 

subsumes Amitsur's result; in fact such a proof  has been known by Amitsur.) 

Case 11. In general, let t? = U / A n n J  and J = (J + Ann J ) /AnnJ .  0 is a 

universal PI-algebra by Theorem 1. Also, 0 is semiprime. (Indeed, suppose there 

is an ideal A of U with A 2 _ A n n J .  Then ( J A )  2 ~ JA 2 = 0, implying JA = 0; 

hence A _~ Ann J,  so .4 = 0.) Likewise, Ann ] = 0. On the other hand, setting 

H = cent U, we see ] n H is a quasi-regular ideal of H, so that Ann ( ]  n H) = 0. 

(Proof: let/~ = A n n ( J n H ) .  Then (H n ] / ~ )  2 ~_ (H n ] ) / ~  = 0, so H ~ ] B  = 0; 

thus UtB = 0 by Theorem A, so/~ _ Ann ] = 0.) This observation, in conjunction 

with Case I, reduces the theorem to the following lemma. 

LEMMA. Let R be a semiprime PI-algebra with center C, such that Ann Rad C 

=0.  Then all identities of R are sums of completely homogeneous identities. 

PROOF. Suppose an identity f(Xx,  ..-, Xr~) of  R is not homogeneous in XI,  and 

let f~(X~,..., X,~) be the sums of those monomials o f f  with degree i in X1. Clearly 

f (X1 ,  ...,Xm) = ~,~f~(X1, ...,Xm); we shall prove each fi is an identity of  R, and 

the lemma will follow by iteration of this procedure on each indeterminate. 

Choose arbitrarily r l , . . . ,  r,~ in R and let Yt = f ,(rl,  "", rm), 0 < i < d, where d is 

the degree of  f in the first indeterminate. For any c in Rad C, 0 < j  < d, 

~_fl cii,, = f(cJrl ,  r2, rm) = 0. Using the Vandermonde determinant argument i = O  Y i  " " ,  

on this system of d + 1 equations (with y~ as the variables, 0 _< i -< d), we obtain 

g(c)y~ = 0 for all i, where g(c) is a product of terms of  the form c p -  c q, p < q. 

Let g(c) = ctgx(e), gx a polynomial in c having constant term 1. Since c e R a d  C, 

gl(c) is invertible, so cty~ = 0 for all i. Thus (cy~R) t = 0, implying ey~ = 0, all i 

and all c in Rad C. Hence y~ ~Ann Rad C = 0, all i, implying eachf~ is an identity 

of  R, as claimed. Q.E.D. 

Theorem 4 can be applied to algebras of generic matrices f~{Y} since these are 

universal PI-algebras (by Theorem 1). 
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THEOREM 5. Rad (f2{Y}) is the set of nilpotent elements of f~{Y}. 

PROOF. In view of Theorem 4, we need only show each nilpotent element of  

fl{Y} is in Rad(~{Y}).  Suppose f ( Y 1 , ' " ,  Ym)' = 0. Then f (X1 ,  "",Xm)' is an 

identity of  M,(f~'), hence of M,(f~'/P) for any prime ideal P of  f~'. But f~ ' /P  is 

an infinite domain, so f ( X l , ' " ,  Xm) is an identity of  Mn(D'/P) (by the remarks 

preceding Theorem 2). I f  N '  is the nilradical of  f~' then Mn(N') is the nilradical of  

M , ( ~ ' )  and we conclude f (Y I , . . . ,  Ym)~ M,(N ' )  c3 f~(Y} __q Rad (f~(Y}). Q.E.D. 

COROLLARY. f~{Y} has no nonzero nilpotent elements if  and only if  f~ is 

semiprime. 
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